Inhibition of p42 and p44 MAP kinase does not alter smooth muscle contraction in swine carotid artery.

نویسندگان

  • Isabelle Gorenne
  • Xiaoling Su
  • Robert S Moreland
چکیده

Caldesmon inhibits myosin ATPase activity; phosphorylation of caldesmon reverses the inhibition. The caldesmon kinase is believed to be mitogen-activated protein (MAP) kinase. MAP kinases are activated during vascular stimulation, but a cause-and-effect relationship between kinase activity and contraction has not been established. We examined the role of MAP kinase in contraction using PD-098059, an inhibitor of MAP kinase kinase (MEK). MAP kinase activity was assessed using an anti-active MAP kinase antibody and direct measurement of MAP kinase catalyzed phosphorylation of myelin basic protein, MBP-(95-98). MAP kinase phosphorylation, stimulated by histamine (50 μM) or phorbol 12,13-dibutyrate (PDBu, 0.1 μM), was inhibited by PD-098059 (100 μM). PD-098059 did not alter the sensitivity or the maximal level of force in smooth muscle stimulated by histamine or PDBu, nor did PD-098059 affect contraction of β-escin-permeabilized tissue. Our data suggest that p44 and p42 MAP kinases are not involved in regulation of vascular smooth muscle contraction. These results do not, however, preclude a role for other isoforms of the MAP kinase family.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle.

Vascular smooth muscle contraction is primarily regulated by phosphorylation of myosin light chain. There are also modulatory pathways that control the final level of force development. We tested the hypothesis that protein kinase C (PKC) and mitogen-activated protein (MAP) kinase modulate vascular smooth muscle activity via effects on MAP kinase phosphatase-1 (MKP-1). Swine carotid arteries we...

متن کامل

Role of p44/p42 MAP kinase in the age-dependent increase in vascular smooth muscle cell proliferation and neointimal formation.

OBJECTIVE Age-dependent increase in vascular smooth muscle cell (VSMC) proliferation is thought to contribute to the pathology of atherosclerotic diseases. In this study, we investigated the role of mitogen-activated protein kinases (MAPKs) on VSMC proliferation and neointimal formation in the context of aging. METHODS AND RESULTS VSMCs were isolated from the aorta of young and old rabbits. T...

متن کامل

Inhibition of vascular smooth muscle cell proliferation and neointimal formation in injured arteries by a novel, oral mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor.

BACKGROUND Mitogen-activated protein kinases (MAPKs) are rapidly induced after arterial injury in different animal models. However, their precise role in vascular smooth muscle cell (VSMC) proliferation and neointimal formation in vivo remains to be determined. METHODS AND RESULTS We investigated the properties of a novel, selective inhibitor of the upstream kinase, MAPK/extracellular signal-...

متن کامل

Sustained Contraction in Vascular Smooth Muscle by Activation of L-type Ca2+ Channels Does Not Involve Ca2+ Sensitization or Caldesmon

Vascular smooth muscle (VSM) is unique in its ability to maintain an intrinsic level of contractile force, known as tone. Vascular tone is believed to arise from the constitutive activity of membrane-bound L-type Ca2+ channels (LTCC). This study used a pharmacological agonist of LTCC, Bay K8644, to elicit a sustained, sub-maximal contraction in VSM that mimics tone. Downstream signaling was inv...

متن کامل

Role of p42/p44 mitogen-activated-protein kinase and p21waf1/cip1 in the regulation of vascular smooth muscle cell proliferation by nitric oxide.

The purpose of this study was to determine the involvement of the p42/p44 mitogen-activated protein kinase (MAPK) pathway and induction of p21(waf1/cip1) in the antiproliferative effects of nitric oxide (NO) on rat aortic smooth muscle cells (RASMC). NO, like alpha-difluoromethylornithine (DFMO), interferes with cell proliferation by inhibiting ornithine decarboxylase (ODC) and, therefore, poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 275 1  شماره 

صفحات  -

تاریخ انتشار 1998